首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11511篇
  免费   1117篇
  国内免费   1985篇
测绘学   291篇
大气科学   477篇
地球物理   1077篇
地质学   5257篇
海洋学   1171篇
天文学   5076篇
综合类   422篇
自然地理   842篇
  2024年   24篇
  2023年   88篇
  2022年   255篇
  2021年   263篇
  2020年   300篇
  2019年   365篇
  2018年   267篇
  2017年   304篇
  2016年   331篇
  2015年   367篇
  2014年   602篇
  2013年   638篇
  2012年   644篇
  2011年   771篇
  2010年   811篇
  2009年   1147篇
  2008年   1065篇
  2007年   936篇
  2006年   881篇
  2005年   777篇
  2004年   646篇
  2003年   530篇
  2002年   443篇
  2001年   388篇
  2000年   366篇
  1999年   328篇
  1998年   228篇
  1997年   114篇
  1996年   110篇
  1995年   109篇
  1994年   73篇
  1993年   100篇
  1992年   43篇
  1991年   43篇
  1990年   38篇
  1989年   30篇
  1988年   27篇
  1987年   11篇
  1986年   19篇
  1985年   25篇
  1984年   21篇
  1983年   18篇
  1982年   17篇
  1981年   6篇
  1980年   12篇
  1979年   3篇
  1978年   8篇
  1977年   15篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Mary C. Bourke 《Icarus》2010,205(1):183-197
Barchan dune asymmetry refers to the extension of one barchan limb downwind. It is a common dune form on Earth and also occurs on Mars and Titan. A new classification of barchan limbs is presented where three types of limb morphology are identified: linear, kinked and beaded. These, along with other dune-scale morphological signatures, are used to identify three of the causes of barchan asymmetry on Mars: bi-directional winds, dune collision and the influence of inclined topography.The potential for specific dune asymmetric morphologies to indicate aspects of the formative wind regime on planetary surfaces is shown. For example, the placement of dune limbs can indicate the general direction and relative strength of formative oblique winds; an extreme barchan limb length may indicate a long duration oblique wind; a kinked limb may be evidence of the passage of a storm; beaded limbs may represent surface-wave instabilities caused by an increase in wind energy parallel to the dune. A preliminary application of these signatures finds evidence for bi-modal winds on Mars. However, these and other morphological signatures of wind direction and relative strength should be applied to planetary landforms with caution as more than one process (e.g., bi-modal winds and collision) may be operating together or sequentially on the dunefield. In addition, analysis should be undertaken at the dunefield scale and not on individual dunes. Finally, morphological data should be acquired from similar-scale dunes within a dunefield.In addition to bi-modal wind regimes on Mars, the frequent parallel alignment of the extended barchan limb to the dune suggests that dune collision is also an important cause of asymmetry on Mars. Some of the more complex dunefield patterns result from a combination of dune collision, limb extension and merging with downwind dunes.Dune asymmetric form does not inhibit dune migration in the Namib Desert or on Mars. Data from the Namib suggest that dune migration rates are similar for symmetric and asymmetric dunes. Further modeling and field studies are needed to refine our understanding of the potential range of limb and dune morphologies that can result from specific asymmetry causes.  相似文献   
992.
Thermal contraction crack polygons are complex landforms that have begun to be deciphered on Earth and Mars by the combined investigative efforts of geomorphology, environmental monitoring, physical models, paleoclimate reconstruction, and geochemistry. Thermal contraction crack polygons are excellent indicators of the current or past presence of ground ice, ranging in ice content from weakly cemented soils to debris-covered massive ice. Relative to larger topographic features, polygons may form rapidly, and reflect climate conditions at the time of formation—preserving climate information as relict landforms in the geological record. Polygon morphology and internal textural characteristics can be used to distinguish surfaces modified by the seasonal presence of a wet active layer or dry active layer, and to delimit subsurface ice conditions. Analysis of martian polygon morphology and distribution indicates that geologically-recent thermal contraction crack polygons on Mars form predominantly in an ice-rich latitude-dependent mantle, more likely composed of massive ice deposited by precipitation than by cyclical vapor diffusion into regolith. Regional and local heterogeneities in polygon morphology can be used to distinguish variations in ice content, deposition and modification history, and to assess microclimate variation on timescales of ka to Ma. Analyses of martian polygon morphology, guided by investigations of terrestrial analog thermal contraction crack polygons, strongly suggest the importance of excess ice in the formation and development of many martian thermal contraction crack polygons—implying the presence of an ice-rich substrate that was fractured during and subsequent to obliquity-driven depositional periods and continually modified by ongoing vapor equilibration processes.  相似文献   
993.
Optical constants in a broad temperature and wavelength range are important input parameters in radiative transfer models used in studies of planetary atmospheres. In the laboratory, the refractive index values of ices at the HeNe laser wavelength (632.8 nm) are often used to monitor the growth rate and thickness of ice films. In this report we present laboratory measurements determining the refractive index at 632.8 nm of ammonia and hydrocarbon ices in the temperature range 80-100 K. Thin ice films are vapor-deposited on a cryogenically cooled mirror located inside a high-vacuum apparatus. The real component of the refractive index of these ice films is determined by a two-angle interferometric technique. Optical modeling calculations of the transmittance and reflectance through the thin ice films assist in the interpretation of the experimental results. We discuss our results and compare them with other measurements available in the literature. The results reported here are relevant to the spectroscopy of icy objects in the solar system; they are needed to perform laboratory characterization of ices, derive optical constants, and model spectra.  相似文献   
994.
More than 490 elliptical aerobraking and science phasing orbits made by Mars Global Surveyor (MGS) in 1997 and 1998 provide unprecedented coverage of the solar wind in the vicinity of the orbits of the martian moons Phobos and Deimos. We have performed a comprehensive survey of magnetic field perturbations in the solar wind to search for possible signatures of solar wind interaction with dust or gas escaping from the moons. A total of 1246 solar wind disturbance events were identified and their distribution was examined relative to Phobos, the Phobos orbit, and the Deimos orbit. We find that the spatial distribution of solar wind perturbations does not increase near or downstream of Phobos, Phobos’ orbit, or Deimos’ orbit, which would have been expected if there is significant outgassing or dust escape from the martian moons. Of the 1246 magnetic field perturbation events found in the MGS data set, 11 events were found within 2000 km of the Phobos orbit, while three events were found within 2000 km of the Deimos orbit. These events were analyzed in detail and found to likely have other causes than outgassing/dust escape from the martian moons. Thus we conclude that the amount of gas/dust escaping the martian moons is not significant enough to induce detectable magnetic field perturbations in the solar wind. In essence we have not found any clear evidence in the MGS magnetic field data for outgassing or dust escape from the martian moons.  相似文献   
995.
Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade.  相似文献   
996.
Patrick Michel  Marco Delbo 《Icarus》2010,209(2):520-534
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices.  相似文献   
997.
A. Cellino  M. Delbò 《Icarus》2010,209(2):556-563
We present the results of a campaign of polarimetric observations of small asteroids belonging to the Karin and Koronis families, carried out at the ESO Cerro Paranal Observatory using the VLT-Kueyen 8-m telescope. The Karin family is known to be very young, having likely been produced by the disruption of an original member of the Koronis family less than 6 Myr ago. The purpose of our study was to derive polarimetric properties for a reasonable sample of objects belonging to the two families, in order to look for possible systematic differences between them, to be interpreted in terms of differences in surface properties, in particular albedo. In turn, systematic albedo differences might be caused by different times of exposure to space weathering processes experienced by the two groups of objects. The results of our analysis indicate that no appreciable difference exists between the polarimetric properties of Karin and Koronis members. We thus find that space-weathering mechanisms may be very efficient in affecting surface properties of S-class asteroids on very short timescales. This result complements some independent evidence found by recent spectroscopic studies of very young families.  相似文献   
998.
This study presents the latest results on the mesospheric CO2 clouds in the martian atmosphere based on observations by OMEGA and HRSC onboard Mars Express. We have mapped the mesospheric CO2 clouds during nearly three martian years of OMEGA data yielding a cloud dataset of ∼60 occurrences. The global mapping shows that the equatorial clouds are mainly observed in a distinct longitudinal corridor, at seasons Ls = 0-60° and again at and after Ls = 90°. A recent observation shows that the equatorial CO2 cloud season may start as early as at Ls = 330°. Three cases of mesospheric midlatitude autumn clouds have been observed. Two cloud shadow observations enabled the mapping of the cloud optical depth (τ = 0.01-0.6 with median values of 0.13-0.2 at λ = 1 μm) and the effective radii (mainly 1-3 μm with median values of 2.0-2.3 μm) of the cloud crystals. The HRSC dataset of 28 high-altitude cloud observations shows that the observed clouds reside mainly in the altitude range ∼60-85 km and their east-west speeds range from 15 to 107 m/s. Two clouds at southern midlatitudes were observed at an altitude range of 53-62 km. The speed of one of these southern midlatitude clouds was measured, and it exhibited west-east oriented speeds between 5 and 42 m/s. The seasonal and geographical distribution as well as the observed altitudes are mostly in line with previous work. The LMD Mars Global Climate Model shows that at the cloud altitude range (65-85 km) the temperatures exhibit significant daily variability (caused by the thermal tides) with the coldest temperatures towards the end of the afternoon. The GCM predicts the coldest temperatures of this altitude range and the season Ls = 0-30° in the longitudinal corridor where most of the cloud observations have been made. However, the model does not predict supersaturation, but the GCM-predicted winds are in fair agreement with the HRSC-measured cloud speeds. The clouds exhibit variable morphologies, but mainly cirrus-type, filamented clouds are observed (nearly all HRSC observations and most of OMEGA observations). In ∼15% of OMEGA observations, clumpy, round cloud structures are observed, but very few clouds in the HRSC dataset show similar morphology. These observations of clumpy, cumuliform-type clouds raise questions on the possibility of mesospheric convection on Mars, and we discuss this hypothesis based on Convective Available Potential Energy calculations.  相似文献   
999.
A significant opaque component in Mercury’s crust is inferred based on albedo and spectral observations. Previous workers have favored iron-titanium bearing oxide minerals as the spectrally neutral opaque. A consequence of this hypothesis is that Mercury’s surface would have a high FeO content. An array of remote sensing techniques have not provided definitive constraints on the FeO content of Mercury’s surface. However, spectral observations have not detected a diagnostic 1 μm absorption band and have thus limited the FeO in coexisting silicates to <2 wt.% FeO. In this paper, we assess equilibrium among oxide and silicate minerals to constrain the distribution of iron between opaque oxides and silicates under a variety of environmental conditions. Equilibrium modeling is favored here because the geologic process that produced Mercury’s low-albedo intermediate terrain must have occurred globally, which favors a common widespread igneous process. Based on our modeling, we find that iron-rich ilmenite cannot occur with silicates that do not display a 1 μm absorption feature unless plagioclase abundances are high. However, such high plagioclase abundances are precluded by Mercury’s low albedo. Incorporating equilibrium crystallization modeling with spectral and albedo constraints we find the iron abundance of Mercury’s intermediate terrain is ?10 wt.% FeO. This intermediate iron composition matches constraints provided by visible albedo and total neutron absorption observed by MESSENGER. In fact, the total neutron absorption of mixtures of oxide, plagioclase, olivine and pyroxene for the oxide abundances estimated for Mercury, favor Mg-rich members of the ilmenite-geikielite solid-solution series. This work offers compositional constraints for Fe, Ti, and Mg that will be testable by various MESSENGER instrument data sets after it begins its orbital mission.  相似文献   
1000.
The surface composition of Europa is of great importance for understanding both the internal evolution of Europa and its putative ocean. The Near Infrared Mapping Spectrometer (NIMS) investigation on Galileo observed Europa and the other Galilean satellites from 0.7 to 5.2 μm with spatial resolution down to a few kilometers during flybys by the spacecraft as it orbited Jupiter. These data have been analyzed and results published over the life of the Galileo mission and afterward. One result was the discovery of hydrated minerals at some locations on Europa and Ganymede. The data are noisy, especially for Europa, due to radiation affecting the NIMS electronics and detectors, and other artifacts are also present. The NIMS data are now being reprocessed using the accumulated knowledge gained over the entire missions to remove noise spikes and compensate for some other defects in the data. We are analyzing these reprocessed data in an attempt to defined better the nature of the hydrate spectral features and improve their interpretation. We report here on analyses of two NIMS reprocessed observations for the 0.7-3-μm region. A revised hydrate spectrum is calculated and mapped in detail across two lineaments. The spectrum shows the expected distorted water features but little or no spectral structure in these features. A narrow, weak spectral feature appears at 1.344 μm, which is weakly correlated with lower albedo. Several other weak features may be present but are difficult to confirm in these limited data sets. The hydrate signature shows the greatest strength within and toward the center of the lineaments, confirming and strengthening the association of the hydrate with these endogenic features. This trend may indicate that the material in the lineaments is youngest toward the center and has more water frost coverage toward the edge. A small, visually dark, circular feature has a spectrum that shows both hydrate and crystalline water ice features and perhaps contains a hydrate different in spectral characteristics and perhaps composition than found in the lineament.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号